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A procedure is proposed for approximating solutions of the Cauchy problem in Lagrangian mechanics. The technique is based 
on a certain version of Galerkin's method. It involves transforming the dynamical system to canonical form. The approximation 
algorithm is shown to be equivalent to procedures based on variational formulations of the Cauchy problem in Lagrangian 
dynamics. A procedure for the approximate construction of a solution of Mathieu's equation is considered as an example. 

1. R E D U C T I O N  TO A H A M I L T O N I A N  SYSTEM 

The technique proposed in [1] is equivalent to the widely used algorithms for solving Cauchy problems 
in holonomic mechanics by using variational principles. Suppose that in a time interval [to, tl] it is required 
to approximate the motion of a holonomic mechanical system with generalized coordinates ql, q2 . . . .  , 
qn and kinetic energy 

T(t,q,/I) = T2 (t, q,/!) + Tt (t,q,/l) + T0 (t,q) 

where T/(i = 0, 1, 2) are homogeneous functions of the velocities with T2 positive definite. Let Q(t, q, 
tj) ~ R n be a vector of generalized forces. 

In the Cauchy problem one considers the equations of motion 

d ~T ~T 
dt Oq Oq 

= Q  (1.1) 

together with initiM conditions 

q(to ) = qO, ~l(to) = ~i o (1.2) 

Assuming that the functions T(t, q, ¢j), Q(t, q, q) are sufficiently smooth, we can state that the 
solution q(t) belongs to the Sobolev space He([to, ti], R n) (henceforth denoted simply by H~) of vector- 
valued functions that are square integrable together with all their derivatives up to and including the 
second order. By (L2), the space H2,, may be replaced by the smaller affine subspace H2~0 of funct!ons 
that satisfy these conditions. The corresponding tangent space (the space of variations) Tq/-/~0 =/:/~ is 
the set of all functions &l e H2~ that satisfy the initial conditions 

8q(to)=0, 8400)=0 

We can now formulate the Cauchy problem for the system of equations (1.1) as follows. Assume that the 
conditions of the mtiqueness theorem for (1.1) hold throughout [to, tl]. Then a solution q ~ H2n satisfy- 
ing conditions (1.2) will be a function q e H~0. The elements of HUn0 may be expressed as q(t) = q0 + 
ql~t), where ql ~ H:,~. If q(t) is a solution of the Cauchy problem, then, by uniqueness, q(t) + &l(t) (&l 
H~0 will also be a solution if and only if &l(t) - 0. This condition may be replaced by the integral form 
of D'Alembert's pl~mciple as the equation of work in the interval [to, h] 

tl 
S((Tq,$/l>+(Tq +Q, fq))dt-(Tq,$q)lq = 0 (V~Sq e ~2) (1.3) 
to 

where (., .) is the s~tlar product in Euclidean space R n. 

fPrikl. Mat Mekh. Voll. 59, No. 1, pp. 10-20, 1995. 
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Equation (1.3) is interpreted as Hamilton's principle [2--4]. To apply the technique proposed 
here. we turn to Hamiltonian dynamics, as defined by the variables q, p = T~i. If q e HZn, then/1 ~ Hin 
= Hl([to, tl], Rn). Therefore, when we change to the vector of canonical variables z = (q, p)r, we must 
take H~, = H~([to, h], R ~') as a functional space of trajectories. The Cauchy problem 

q(to ) = qO, p(to ) = pO = T~l(t, qo,~l O) 

reduces H~, to the affine subspace H~,0 consisting of all functions z(t) such that z(t0) = z ° = (q0, p0)r. 
The tangent space to H~,,0 at a point z ~ H~,,0 is the linear subspace H 1 of functions 5z(t) such that 
~z(t0) = 0. 

Since 

T(t,q,/I) = (P(t,q, ¢l),tl) - K(t,q,p(t,q,i])) 

it follows that 

fiT = (Tq, ~/l) + (Tq ,Sq) = ~(p(t, q,/l),/i) - (Kq,Sq) - (Kp, 5p) 

Thus 

tl 

I ((¢1- Kp, 5p) + ( - p -  Kq + Q, &l)) = at = o 
to 

T o l  
(V ~z = (Sq, 5p) e H2n) 

Let us retain the notation (., -) for the scalar product in R z~. Then Eq. (1.3) may be written in the 
equivalent form 

tl 

( -JZ-Kz+F,  Sz)dt=O (VSz ~ h~n) (1.4) 
tO 

where J is a ,s3~al plectic matrix in R 2n, K z = (Kq, K.) r, F = (P, 0) x. 
Since z ~ H~n, it follows that ~. ~ L2 = L2([to, tl~, R2n). Thus the first factor in (1.4) is -Jz - K, + F e 

* 1  L2. Next, we know that H~n is continuously embeddable in L2 and dense there. Since H2n is dense in 
the metric o fL  2 in H~,  it follows that it is also dense in L2. The scalar product of  L2 is continuous there 
with respect to either of its arguments. Equation (1.4) holds for any 5z ~ Le, and so almost everywhere 
in [to, tt] the system of Hamiltonian equations 

J~. = - K z  + F (1 .5)  

is satisfied. 
Moreover, it is obvious from (1.5) that the function on the right is continuous with respect to t ~ [to, 

h] (since T and P are assumed to be sufficiently smooth in their arguments). Hence this equation holds 
everywhere in [to, tl] for solutions of the Cauchy problem for the Hamiltonian system (1.5). Multiplying 
both sides of (1.5) by the symplectic matrix -J, we obtain a system of equations in Cauchy form 

= Z(t, z) (Z(t, z) = JKz(t, z) + (0, P(t, z)) T) (1.6) 

2. THE P R O B L E M  OF C H O O S I N G  A BASIS 

We can now apply the results of [1, 5]. Fixing a natural number m, we will seek a solution of system 
(1.6) in the form 

z( t )=  ~ Zk[COsk• t - t °  - 1 ]  
k = l  1 tl - to 

and then apply the ideas outlined in [5]. However, the reduction carried out in [1] will enable us to use 
the metric of L2 in the space of derivatives y = £ 

As in [1], we consider the space CA of absolutely continuous functions in [to, td with values in R z~. 
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Now let 

D: CA --~ L 1 = Ll([t o, tl], R 2n) 

be the operator of  differentiation with respect to t: (Dz)(t) = i(t). We know [1] that D is surjective, 
since the antiderivative of  any summable function is absolutely continuous. The space CA can be split 
into a direct sum CA - R 2n + CA °, where CA ° is the set of all absolutely continuous functions z(t) 
such that z(t0) = 0. 

We also know [:[] that the restrictions 

D: CA ° --~ L1, D: z ° + CA ° ---> LI (z% R')  

are homoe0morphisms. Finally, the Cauchy problem for the differential equation (1.6) may be reduced 
to a fimctional equation y = T(y) in Lt  (or in L2), where T is the non-linear operator defined by 

(T(y))(t) = Z(t,(D-ly)(t)), (D-lY)(t) = z° + I y(x)dx 
to 

Then the requir,:d approximation may be written in terms of  undetermined coefficients as 

m t - - t  o 
y(t) = • Yk sin kn (2.1) 

k=l tl - to 

Denoting the corresponding projection operator byPm, we can derive the system of Galerkin equations 
of  the form 

y=PmT(Y) (y~PmL2, m ~ N )  

and moreover the group of  2n equations corresponding to the kth harmonic in (2.1) may be obtained 
by substituting the function 

~z = ej sink~ t - t ° ,  (j=l,2,. . . ,2n) 
t I - t 0 

into (1.4). 
Thus, the procedare considered in [2-4] can be transformed correctly to Hamiltonian form, and only 

then should one apply Galerkin's method. 

In fact, the examples of dynamical systems considered in [2-4, 6, 7] are such that the kinematic energy has constant 
coefficients, indepemlent of q. In such cases the Legendre transformation becomes a trivial operation, which 
eliminates many problems that arise in the implementation of projection algorithms. The basis functions used in 
.[6, 7] are the Legen&'e polynomials. 

Thus, let us assmne that 

T2(t,q,i])=Y2(Ai],(]), Tl(t ,q,q)=(a,¢l) ,  T0( t ,q)=0 

The constant quantity To maybe omitted. The elements of  the positive definite symmetric matrixA and 
the components of  l~te vector a are constants. 

We shall show that application of  the projection method for Eq. (1.1) with condition (1.2) is equivalent 
to using the projectiion method for the equation 

y = JKz(y)+ (0,P(y)) r, y = (q,l~) T (2.2) 

JKz(y)=(Bp(y)+b,O) ~, B=A -I, b = _ A - l a  

P(y)(t)  =P( t ,q(y)( t ) ,  p(y)(t)) 
t t 

q(y)(t) = q0 + S ¢1(I:) d~, p(y)(t) = p0 + S l~(q:)dx 
to to 

These relations are obtained by using the Legendre transformation p = Ati + a, which yields ¢i = 
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A-l(p - a). The kinetic energy in the Hamiltonian system is given by the formula 

K(p) = (p, q) - T(cl) = ~ (Bp, p) + (b, p) 

By virtue of the initial conditions, application of Galerkin's method to the work equation (1.3) is 
equivalent to its application to the system of Lagrange equations. 

Let us consider the problem of choosing the basis functions. It turns out that the equivalence of the 
Galerkin equations for the Hamiltonian system, on the one hand, and the Lagrangian system, on the 
other, hinges on this choice. 

In fact, let us first consider the trigonometric functions. The derivative of the phase variable z = (q, 
p)T may be expanded relative to the basis of L2 consisting of the functions 

{ e i s i n ~  t - t ° .  ~ 2n; k = l , 2  ) 
"i 

(j=l,2 
t I - t o J 

The antiderivative can then be expanded uniquely in terms of the basis functions 

{ejcosk~ ~ ( j = l , 2  ..... 2n; k=O,1 .... ) 
t - t  o 

t 1 - l o . I 

(2.3) 

(2.4) 

Suppose that the system of Galerkin equations (2.2) corresponding to the Cauchy problem for the 
canonical equations may be written as 

2n ,n t _ t o  
7.(t) = ~, Y. Zjk sin k~ ej 

j = l  k=t  tt  - t o 

In that case a uniform approximation of the solution of system (1.6) is 

2n m t - -  t 0 
Z(t) = X X Zjk COS  ej, 

j = l  k=0  tl  - to 

= t~ktO z#  (k = 1,2 ..... m) 

ZJ 0 = z j ( t o ) -  t 1 - t  o ~ zjk 
k=l k 

If the approximations of the coordinates and momenta are considered separately, we have 

q(t)= ~ ~ Qj~coskx t - t °  ej ,  
j=l k=0 tl - to 

p(t)= cos  t-to ej 
j=t ~=0 tl - to 

= zj . = ( j  = 1 . 2  . . . . .  n) 
n 2n where the basis vectors in R are denoted by the same symbols as those of R :ei. 

On the other hand, following the techniques of [2-4, 6, 7], suppose that the Galerkin equations have 
been set up for the system of Lagrange equations and an approximation has been found for the solution 
of the Cauchy problem. In accordance with the preceding discussion, we use the basis (2.4). A direct 
cheek will then verify that the trigonometric functions do not yield a convenient basis for Galerkin 
approximation of the solution of the Cauchy problem for the second-order Lagrange equations. 

If one uses the trigonometric basis, there may be difficulties in satisfying the initial conditions; secular 
terms may also appear when the operator D- ' i s  applied. It should nevertheless be noted that the use 
of technique of [1, 5] produces results in terms of the trigonometric basis, provided that the dynamics 
of the system are represented in the Hamiltonian formulation (or by the Lagrange equations transformed 
in some way to Cauchy form). 

It turns out that the equivalence of the techniques of [2-4, 6, 7] and that of the present paper may 
be established in terms of bases that use the classical orthogonal polynomials. Let (Pk(X)}~=0 be one 
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such system, defined in the interval [-1, 1]. It is convenient to define a transformation of the independent 
variable t -~ x, say, by the formula 

"r = - 2  t - t °  +1 
t I - -  t o 

One approach to the use of Chebyshev polynomials in Galerldn's method may be found in [5]. 
Henceforth, in order to avoid the cumbersome notation due to the above transformation, we shall assume 
from the start that the dynamical system in question is defined for t ~ [-1, 1] and that the initial data 
are defined at t = 1: q(1) = q0, ¢](1) = q0 or q(1) = q0, p(1) = p0 (for a Hamiltonian system). 

3. EQUIVALENCE 

Thus, let {~Pk(t)}~=0 be an orthogonal basis in L2([-1, 1], o~), whose elements are square integrable 
in Lebesgue's sense with weight function ¢(t) ~> 0. The corresponding Radon measure dl~l = cc(t)dt is 
finite if the functions ~k(t) are classical orthogonal polynomials. It is known [8] that each of the systems 
yk(t) = ~k+l(t), Z~(t) = ~tk+l(t) (k = 0, 1 . . . .  ) forms an orthogonal basis in the spaces L2([-1, 1], [I), 
L2([-1, 1], y), reslw.~ztively. The weight functions [~(t), T(t) ~> 0 for the derivatives may be obtained 
using standard rules [8]. Thus, the elements of the space ]'-/~ will now be functions defined in [-1, 1] 
whose second derivatives are square integrable with weight y and their first derivatives are square 
integrable with weight [3. The functions themselves are square integrable with weight oL 

It is clear that the bases are transformed into one another by differentiation. Neither do any problems 
arise when a p p l ~ g  the operator D -1. In fact, suppose we have an approximation of generalized 
accelerations 

m 

i~(t)= Y~ ijD~k(t ) 
k=O 

Then a uniform approximation of the generalized velocities may be obtained by the formula 
m + l  

il(t)= Z qikYk(t) 
k=O 

] /lk----iik-i (k= l ,2  . . . . .  re+l), % = qO_ i]k¥~÷l(1) ¥~1 (1) 

Note that the zeroth element of any system of classical orthogonal polynomials is a constant. We can 
now derive formulae for the uniform approximation of the generalized coordinates 

m + 2  
q(t )=  ]~ q~0k(t) 

k=O [." ] qk----~lk_~ (k= l ,2  ..... m+2), qo-- qO-k~/ikVk+l(1)~Ol(1) 

We now return to the Hamiltonian system and form an orthogonai basis in the space of derivatives 
of the phase variables z(t) 

{ei~k(t), en+j~t(t)} (j  = 1,2 ..... n; ej,en+ j ~ R2n;  k , l  = 0,1 . . . .  ) 

We define the finite-dimensional approximation space Em as the linear span of the basis functions 

{ejv~(t), en+jZt( t)}  ( j = l , 2  . . . . .  n; k = O , l  . . . . .  m+l,  l = 0 , 1  . . . . .  m)  

Hamilton's equatious (1.6) are 

q = B p + b ,  p = P ( t , q , p )  

and the corresponding functional notation in the space of derivatives is 

¢1 = B(D-I! ~) + b, I~ = P(t, D"I~I, D-Ip) (3.1) 
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where the antidiffereatiation operator is defmed,as, in (2.2), Galerkin's system of projection equations 
for (3.1) in Em may be written as 

dt = B(D-IP) + b, I$ = [P(t, D-1¢1, D-~P)lm (3.2) 

where the brackets denote expansion of the vector-valued function P(t, D-lti, D-I[~) in terms of the basis 
{e~Xi(t)} (~ e IP) and omission of all the terms ej~l(t) for I > m. As for the first subsystem of Eqs (3.1), 
the operatmns on the r i o t  do not lead to functions outside E,,,. Infact, we have E,,, =E¢m xE~, where 
E~ is the linear span of the functions 

{ejwt(t)} (ejERn; k=0, 1 ..... m+ I) 

and E p that of the functions 

{ejxtt)} (ejERn; I=0, I ..... m) 

T ,p 1 Therefore, if (~p)  ¢ Era, then [t~ Eem. Fm~hermore, by the relation D- !~ e Eqm already proved, 
and since B and b are constant matrices, it follows that B(D-lp) + b ~ E~. 

On the other hand, the Lagrangian equations (1.1) are 

Ai] = Q( t ,q ,  cl) 

whence we obtain the Galerkin system of equations (in the same space Era) 

Aii = [Q(t, q,/l)lm (3.3) 

where the brackets have the same meaning as before. 

Theorem. The solutions 

m+2 

q(t)= ~ qkcpt(t) (3.4) 
k=O 

of the system of equations (3.3) satisfying the initial conditions 

q(1) = q0, ¢!(1) = ¢1 ° (3.5) 

correspond in one-to-one fashion with the solutions 

m+l m 

il(t)= E i~k¥~(t), p(t)= Y. ptzk(t) (3.6) 
k=O k=O 

of the system of equations (3.2). The correspondence is effected by means of the Legendre transformation. 

Proof. One can indeed show that systems (3.2) and (3.3) are equivalent, in the sense that each 
transforms into the other within Era. Suppose first that a solution (3.4) satisfies system (3.3) with condition 
(3.5). In fact, we must consider the combined system of Eqs (3.3) and (3.5). 

We shall prove that the functions 

m+l m 

/l(t)= ~ qk+tyk(t), p(t)= Y, Aq~+2~k(t ) 
k=O k=O 

satisfy system (3.2). Construct the antiderivatives 

t m+l m+|  
D-t~l(t) = qO +~ tl(~)d~ = q O +  ~ qt+lq~k+l(t) - y. qt+lq~k+t(l) 

I k=O k=O (3.7) 

D-'p(t) = pO + J p(~)d~ = pO + ~. Aqt+2~+ ,(t)_ ~ Aqk+2W,÷t (I), 
I k=O k=O 

p0 = A~I o + a 
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Multiply the seoand relationship in (3.7) by the matrix B = A -1, and then add the vector b to both sides. 
Taking the relatJionship between b and a (see (2.2)) into account, we have 

m+l m+l 
(B(D-lp)) ( t )+b=/l  ° -  Y. qk+j~/k(1)+ Y. qk+lyk(t) 

k=O k=O 

The function on the right is equal to/10 at t = 1. By (3.5) 

m+l 

q~o(1)+  ,~. qk+lYk( l )=/ l  ° 
k=l 

For the classi¢~al orthogonal polynomials, ¥0(1) = ¥0(0 -- const. Therefore 

m+l 

(B(D-lp))( t )+b= Y. qk+l~k(t) 
k=l 

i.e. the first of  Eqs (3.2) holds identically. 
We shall now show that the second equation of  (3.3) is identical to (3.3). Indeed, asA is a constant 

matrix, p = A/I. By conditions (2.2), the functions D-ril(t), D-lp(t) are identical with q(t), Ail(t) + a, 
respectively. Therefore, by the definition of  the function P(t, q, p) = Q(t, q, Bp + h), the series expansion 
of  Q(t, q, q) in terms of polynomials {Z~(t)}~=0 is identical with the same expansion for the function 

P(t ,  D-1/l(t), D-l[~(t)) = P(t, q(t), A/l(t) + a) = 

= Q(t, q(t), B(A/l(t) + a) + b) = Q(t, q(t),/l(t)) (3.8) 

The same is tree for segments of these series. Consequently, the right-hand sides of Eqs (3.2) (the 
second group) and (3.3) are identically equal. Thus the second group of  equation in system (3.2) is also 
satisfied. 

Conversely, suppose that solution (3.6) satisfies system (3.2). Then the functions 

m+2 m+2 

q( t )=D-I / l ( t )=q  O-  ~, /lk-iq0k(t) + ~'. /lk_ltPk(t) 
k=l k=l 

satisfy the initial condition q(1) = q0. Since the first group of equations in (3.2) is satisfied, and the 
1 s 1 0 function D-  p(t) ,;atisfies the initial condition D-  1~(1) = Ati + a, it follows that 

/ l (1) = B(D-Ip(1)) + b = B(A/l ° + a) + b =/10 

Thus, all the initi-'d conditions (3.5) are satisfied. 
Again by the Legendre transformation or, what is the same, via the first group of  Eqs (3.2), we have 

Aq  + a = D-lp. t tence A~ = [~, i.e. the left-hand sides of Eqs (3.2) (the second group) and (3.3) are 
identical. But the same is true of the right-hand sides of  these systems of  equations, as follows from 
the fact that the matrixA and vector a are constant and from relationships (3.8). Indeed 

Q(t, q,/l) = Q(t, D-I/l, B(D-lp) + b) = P(t, D-I/l, D-ip) 

Hence the segments of  the appropriate series are also identical. 

Remark. By the results obtained in [1, 5], this theorem implies the legitimacy of the projection approximations 
of the examples in 116, 7], where the basis functions used were indeed classical orthogonal polynomials (shifted 
I_.¢gendre polynomi:ds). 

4. E X A M P L E  

To illustrate the technique used in [1] for approximating solutions of the Lagrange equations, let us consider 
Mathieu's equation 

+ (0~ 2 + e cos t)q = 0 (4.1) 

We have a holonomic system with one degree of freedom and Lagrangian 

L(t, q, ~) =1/2 i/2 _ 1/2 (¢o 2 + e cos t)q 2 (4.2) 
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To fix our ideas, suppose we wish to approximate the solution with initial data q(0) = q0, q(0) = q0 in the interval 
t e [0, T]. Transform to a new argument x E [-1, 1] by the formula 

x = -2T-tt + ! (4.3) 

We ~btain an equation of the form 

q- + [~2 + St cos (ax + b)lq = 0 (4.4) 

where the prime denotes differentiation with respect to x, ~ = coT~2, it = eT2/4, a = T/2, b = -T/2. Equation (4.4) 
describes a dyBamic, al system with Lagrangian 

A(t, q, q') = 1/2 (q,)2 _ 1/2 [Q2 + i~ cos (ax + b)]q 2 

"l~ne desired solution of the Cauchy problem must satisfy the initial conditions 
p 

q(1)=qo ~ q'(l)=q o=-Ttlof2 (4.5) 

Equation (1.3) for (4.4) may be written as 

-I 
[Aq,~/'  + Aq~t]d'c - Aq,~ql_ l = 0 

I 

The technique in question dictates the following procedure. The solution will be approximated using Chebyshev 
polynomials of  the first and second kinds. Working in the space L2 [-1, 1], let us approximate the function q"(x) 
by expanding it with undetermined coefficients in terms of Chebyshev polynomials of the second kind {Uk(x)}~=0 
and taking a segment of the series 

N 
q"(x)= Z zkUk(x) (4.6) 

k=O 

where N is the order of the approximation in the Galerkin scheme. Thus, one can obtain a uniform approximation 
of the generalized velocity as a segment of the series expansion in terms of Chebyshev polynomials of the first kind 

N+! 
q'('C)= ~, ykTk(z) (4.7) 

' k=0 

where the (N+2)-dimensional coefficient vector y = (Y0, Yl . . . .  , yN+l) T is calculated in terms of the vector z = 
(Zo, zl . . . .  , aN) r by the formulae 

N 
YO = q o -  y~ (J+l)- lz j  , Yk =k-izk-I (k= l ,2  ..... N + I )  (4.8) 

j=0 

The function q'(x) thus constructed satisfies the initial condition at x = 1. The generalized coordinate q(x) is also 
approJdmated uniformly, by using the expansion 

N+2 
q(~)= Z XkTk('f) (4.9) 

k=0 

which is obtained by using standard formulae for the antiderivatives of the polynomials Tk(X ) [9]. When that is 
done 

N+I Yl Yj Y2 ~ _ __ x0=q0-Y0--- + ~ ' xl=Y0- , x2=Yl Y3 
4 j=0 j 2 _ l '  2 4 4 

YN+I xt = Yl:-I -Yk+l (k=3 ,4  ..... N+2),  x~+ 2 - - ~  
2k 2(N+ 2) 

Formulae (4.8) were derived by using the standard relation Uk(x) = (k + 1 )-t ~ + 1 (x). In order to set up Galerkin's 
equations, one must substitute from (4.7) and (4.9) into Eq. (4.4), also carrying out the following additional 
operations. 

PutA(x) = ~ + p~ cos(ax + b). This function admits of the easily verified expansion [9] 

A(x)= ~ A:k(~) 
k=O 
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Ao = t ~  + tt/0(a)cos b, A,  = 2 tt/k(a)cos(b + kx/2) (k = 1, 2 , . . .  ), where lk(a) are Bessel functions of  the first 
kind. 

To complete the derivation of Galerkin's equations, we expand the function A(x)q(x) first in terms of the 
polynomials T~(~) and then in terms of Uk(x). In so doing we use the well-known property 

Tm (x)T, (x) = (T,,-,~('O+Tm+n('t))/2 (4.10) 

which holds for arbitrary integers m and n (bearing in mind that T..,,(x) = Tn('O). 
Let us introducx: the following notation for the segment of the Chebyshev series consisting of the first N + 3 

terms 

N+2 
[A(x)q('~)]N+2 = Z YkTk('O (4.11) 

k=O 

where, by (4.10) 
1 Y+2 

YO =Aoxo +-- Z Ajxj 
2 j=0 

Y~ =--2 j=o ~ Ak-jXj+j~=kAj-kXj+'= "= Aj+tx J ( k = l , 2  . . . . .  N + 2 )  

Expressing the polynomials of the first kind in (4.11) in terms of those of the second kind, via the standard formula 

Tk (~) = (Uk (~)- Uk-2 (~)) / 2 

and retaining the first N + I terms of the expansion, we obtain 

N 
[[A(x)q(~)]N+2]N = ]E Z~Uk(~) 

t=o (4.12) 

Zo = ro-Y~/2, zt= (Yt-Yk+2)/2 (t =1,2 ..... 

Finally, the Galerkin system will consist o f N  + 1 algebraic equations in the N + 1 undetermined components 
of  the vector z 

z +Z(z) = 0 (zcR ~+1, Z:R N+I -* R ~'+1) (4.13)  

The vector-valued t~ncrion Z(z) is determined by the components of the expansion (4.12). In the present example 
the system of equations (4.13) is linear in z. In the general case, however, it is desirable to have an initial approxi- 
marion for the solulion of Eqs (4.13). When ~ is small, the number St will not be too large for moderate values of 
T. It turns out that :in actual computations T may be quite large. It is only important to ensure that the norm of 
the derivative of the finite-dimensional operator Z(z) should be less than uniW. One can then use Newton's method 
to find the solution of Eq. (4.13), taking as the initial approximation z ° e l r  w'l  the coefficients of a segment of  the 

~, 0 expansion of the function (q0) (x) in terms of the polynomials Uk(x), where q (x) is the solution of the unperturbed 
linear problem 

q" + f22q = 0 (4.14) 

with the same initial conditions (4.5). The solution of this equation is 

Therefore 

q°('t) = q0cos ~ + q 0i'/-lsinf~ 

Cq°)"~) = Z ~krk~)= ~. z°Uk~), go =qoJ0~a) 
k=O k=O 

g2k-I = 2(--1) k- lqo~-IJ2k-I  (f2), ~2k = 2(--1) k qoJ2t (['~) (k = 1,2,..) 

We can now compute the vector of  the initial approximation for the solution of system (4.13) as 

z 0 = q 0 - g 2 / 2 ,  zO=(qk-~k+2)12 ( k= l , 2  ..... N) 
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